“双碳”目标下炼化行业的技术突围之路
编者按:“双碳”目标对包括石油化工行业在内的许多产业未来发展格局产生了深远影响。能源开发利用技术的革命性进步是能源转型的基本保证。6月17~18日,以“创新支撑高质量发展,绿色引领产业转型”为主题的中国炼油技术高端论坛在京举行。集团公司副总经理凌逸群出席并作题为《浅议“双碳”目标为引领的炼油转型》报告。来自石油石化企业和研究院所的院士、专家200余人参加论坛。
与会专家表示,在碳达峰、碳中和背景下,炼油化工企业应加快结构调整和产业转型升级,大力开展绿色炼油、循环化学、二氧化碳捕集和利用等前沿技术研究,积极拥抱产业变革,顺应发展趋势,实现可持续、高质量发展。
“双碳”目标下炼油化工行业面临的挑战
●炼油产能严重过剩
●产品结构不合理
●碳管理规范标准不健全
●原始创新能力不足
碳达峰、碳中和目标的实质,是加快完成从化石能源向非化石能源的转型。2020年,我国非化石能源在一次能源消费中占比仅为14.2%,化学能源占一次能源消费85.8%,能源转型任重道远。
在“双碳”目标下,炼油化工行业作为我国工业系统中碳排放大户之一,面临着巨大的挑战,也蕴含着巨大的机遇,主要有以下几个方面。
1、产能过剩与产品结构不合理
我国炼油产能严重过剩。2020年我国炼油总能力达8.9亿吨,全年原油加工量为6.47亿吨,装置开工率仅为74%。另外,替代能源的快速发展抑制了成品油需求的增长,未来将进一步加剧炼油产能过剩。根据预测,成品油需求将于2025年到2035年间达到峰值,但化工轻油需求仍然维持较高增长,未来炼化产品结构将发生巨大变化,将由生产成品油为主转向生产化工材料为主。
2、企业碳减排压力与潜力并存
石化工业能源消耗总量较大,仅次于冶金,多年来把节能减排作为转变行业增长方式的重要课题,企业采取了一系列措施,但是总的来说多数耗能产品的能耗水平与国际水平相比仍有差距。目前,炼油化工企业的碳减排潜力很大,碳管理也刚刚起步,企业内部碳强度不平衡,需要做很多规范和标准工作。
3、原始创新能力不足,高端技术研发能力不强
在“双碳”目标下,产业急剧变革,绿色能源和高端化工成为全球竞争的科技前沿。技术的突破需要基础的积累,非连续性的技术突破是普遍规律。
目前来看,在分子炼油方面,新的反应过程、分离过程的突破是重要前沿;在化工领域,高端化学品仍处在研发多、应用少的阶段,转化率低、产业化少,尤其是一些还未全面实现国产化的领域,如高端聚烯烃、弹性体、降解材料、功能膜、电子化学品等。
炼油化工行业转型发展的路径
●减油增化
●燃料清洁低碳化
●可再生能源制氢
●数字化转型
●多能耦合智能低碳能源系统
●生物炼制和循环化工
在“双碳”目标下,炼油化工行业要找准新定位,培育新优势,积极实施新举措。未来的绿色碳科学是一个循环的新系统,结合了传统石油石化行业和可再生能源、氢能、二氧化碳、高端材料等。其中,核心技术的突破毫无疑问将起主导性作用。在会上,专家们提供了炼油化工行业选择转型发展路径必须考虑的几个方面。
1.产品结构调整
交通运输主要用油机具带来的油品消费领域的变化,势必倒推炼油产品结构做出相应调整。减油增化是炼油产品结构调整主要的途径之一,目前有原油直接转化和间接转化两条技术路线,其中原油直接裂解对原油有一定的质量要求。
2.用能结构调整
节能作为第五能源,不论是在运还是新建的炼厂都要把能耗指标放在突出位置加以重视。炼厂能源结构将来可从以下几个方面进行调整:燃料要实现清洁低碳化,减少煤的使用;动力要二次电气化,尽早实现绿电的替代;锅炉或将不是一个必备项;余热资源要进行合理匹配和利用。
3.氢能的开发和利用
氢能是间歇性可再生能源电力系统中不可缺少的能源载体。在碳中和场景下,未来炼厂用氢将主要来源于可再生能源生产的绿氢。未来开发氢能的技术着力点将是可再生能源制氢技术、低能耗氢储存运输技术及氢能利用的安全保障技术,包括标准制定、检测评价、自动感知、氢能的安全泄放等。
4.数字化转型
炼油化工行业的数字化转型一定要以价值为引领,加快产业数字化、数字产业化,实现互融互促,最终达到提高效率的目的。目前产业数字化和数字生态还未完全形成。
对于我国来说,产业数字化的核心是软件。从全球来看,工业企业数字化的重大命题是传感器和传感材料的变革,实现场景的虚拟可视化。
5.炼厂布局调整
在“双碳”目标下炼厂布局的调整,需要同时考虑炼化一体化、市场、资源和可再生能源的因素,风、光、核能等可再生能源富集地将来可能是优化炼厂布局的重要因素。
通过炼厂布局调整,建立化石能源高效转化,发电、供气、供热、供燃料为主体,耦合光伏电、风电、核电、电解水制氢等电、气、氢燃料多能耦合智能低碳的能源系统,是炼油化工企业减少碳排放的一条重要途径。
6.生物炼制和循环化工
我国有非常丰富的生物质能源,从农林废弃物到废弃油脂,需要全产业链考虑,充分利用,实现经济性。生物质可以做成燃料组分生产生物航煤等交通运输燃料,也可以通过糖平台和生物质气化途径生产化学品,以及各种生物基树脂类、纤维类、橡胶类材料。
循环化工方面大有可为。专家预计,2050年全球将产生120亿吨废弃塑料,未来废旧材料资源化利用技术开发是重要发展趋势。另外,二氧化碳的循环利用问题也有一部分要通过化学或化工手段来解决。循环化工首先要在源头上进行变革,在聚合工艺上做变革,在生产的时候就要考虑到回收和加工利用的问题。